Nonlinearly Preconditioned FETI Solver for Substructured Formulations of Nonlinear Problems

نویسندگان

چکیده

We consider the finite element approximation of solution to elliptic partial differential equations such as ones encountered in (quasi)-static mechanics, transient mechanics with implicit time integration, or thermal diffusion. propose a new nonlinear version preconditioning, dedicated substructured and condensed formulations dual approach, i.e., analogues Finite Element Tearing Interconnecting (FETI) solver. By increasing importance local operations, this technique reduces communications between processors throughout parallel solving process. Moreover, tangent systems produced at each step still have exact shape classically preconditioned linear FETI problems, which makes tractability implementation barely modified. The efficiency preconditioner is illustrated on two academic test cases, namely water diffusion problem behavior.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Substructured formulations of nonlinear structure problems - influence of the interface condition

We investigate the use of non-overlapping domain decomposition (DD) methods for nonlinear structure problems. The classic techniques would combine a global Newton solver with a linear DD solver for the tangent systems. We propose a framework where we can swap Newton and DD, so that we solve independent nonlinear problems for each substructure and linear condensed interface problems. The objecti...

متن کامل

Regularized formulations of FETI

FETI 205 A conforming FEM for (2.7) results in the discrete optimality system   K1 0 B T 1 0 0 K̃2 −B2 −C2 Υ B1 −B2 0 0 0 −ΥC2 0 Υ     u1 u2 λ μ   =   f1 f2 0 0   (2.8) where K̃2 ≡ K2 +C2 ΥC2. Elimination of the primal variables in (2.8) results in the coarse grid problem [ B1K −1 1 B T 1 +B2K̃ −1 2 B T 2 B2K̃ −1 2 C T 2 Υ ΥC2K̃ −1 2 B T 2 ΥC2K̃ −1 2 C T 2 Υ−Υ ] [ λ μ ] = [ d1 d1 ] ...

متن کامل

A new impedance accounting for short and long range effects in mixed substructured formulations of nonlinear problems

An efficient method for solving large nonlinear problems combines Newton solvers and Domain Decomposition Methods (DDM). In the DDM framework, the boundary conditions can be chosen to be primal, dual or mixed. The mixed approach presents the advantage to be eligible for the research of an optimal interface parameter (often called impedance) which can increase the convergence rate. The optimal v...

متن کامل

Nonlinearly Preconditioned Inexact Newton Algorithms

Inexact Newton algorithms are commonly used for solving large sparse nonlinear system of equations F (u∗) = 0 arising, for example, from the discretization of partial differential equations. Even with global strategies such as linesearch or trust region, the methods often stagnate at local minima of ‖F‖, especially for problems with unbalanced nonlinearities, because the methods do not have bui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2021

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math9243165